翻訳と辞書
Words near each other
・ Lipari
・ Lipari Cathedral
・ Lipari Landfill
・ Lioubov Vassilieva
・ Liouc
・ Lioudmila Kortchaguina
・ Liougou
・ Liouguei District
・ Liourdis
・ Liourdres
・ Liouville (crater)
・ Liouville dynamical system
・ Liouville field theory
・ Liouville function
・ Liouville gravity
Liouville number
・ Liouville Point
・ Liouville surface
・ Liouville's equation
・ Liouville's formula
・ Liouville's theorem
・ Liouville's theorem (complex analysis)
・ Liouville's theorem (conformal mappings)
・ Liouville's theorem (differential algebra)
・ Liouville's theorem (Hamiltonian)
・ Liouville–Arnold theorem
・ Liouville–Neumann series
・ Liouvillian function
・ Lioux
・ Lioux-les-Monges


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Liouville number : ウィキペディア英語版
Liouville number
In number theory, a Liouville number is an irrational number ''x'' with the property that, for every positive integer ''n'', there exist integers ''p'' and ''q'' with ''q'' > 1 and such that
:0< \left |x- \frac \right| < \frac{q^{n}}.
A Liouville number can thus be approximated "quite closely" by a sequence of rational numbers. In 1844, Joseph Liouville showed that all Liouville numbers are transcendental, thus establishing the existence of transcendental numbers for the first time.
== The existence of Liouville numbers (Liouville's constant) ==
Here we show that Liouville numbers exist by exhibiting a construction that produces such numbers.
For any integer ''b'' ≥ 2, and any sequence of integers (''a''1, ''a''2, …, ), such that ''a''''k'' ∈ , ∀''k'' ∈ , define the number
:x = \sum_^\infty \frac\,; \quad p_n = q_n \sum_^n \frac\right| = \sum_^\infty \frac^\infty \frac^\infty \frac = \frac^\infty \frac = \frac = \frac}^n}\,,
...where the last equality follows from the fact that
:n\cdot n! = n\cdot n! + n! - n! = (n+1)! - n!\;.
Therefore, we conclude that any such ''x'' is a Liouville number.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Liouville number」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.